Volcanic ash supports a diverse bacterial community in a marine mesocosm
نویسندگان
چکیده
Shallow-water coral reef ecosystems, particularly those already impaired by anthropogenic pressures, may be highly sensitive to disturbances from natural catastrophic events, such as volcanic eruptions. Explosive volcanic eruptions expel large quantities of silicate ash particles into the atmosphere, which can disperse across millions of square kilometres and deposit into coral reef ecosystems. Following heavy ash deposition, mass mortality of reef biota is expected, but little is known about the recovery of post-burial reef ecosystems. Reef regeneration depends partly upon the capacity of the ash deposit to be colonised by waterborne bacterial communities and may be influenced to an unknown extent by the physiochemical properties of the ash substrate itself. To determine the potential for volcanic ash to support pioneer bacterial colonisation, we exposed five well-characterised volcanic and coral reef substrates to a marine aquarium under low light conditions for 3 months: volcanic ash, synthetic volcanic glass, carbonate reef sand, calcite sand and quartz sand. Multivariate statistical analysis of Automated Ribosomal Intergenic Spacer Analysis (ARISA) fingerprinting data demonstrates clear segregation of volcanic substrates from the quartz and coral reef substrates over 3 months of bacterial colonisation. Overall bacterial diversity showed shared and substrate-specific bacterial communities; however, the volcanic ash substrate supported the most diverse bacterial community. These data suggest a significant influence of substrate properties (composition, granulometry and colour) on bacterial settlement. Our findings provide first insights into physicochemical controls on pioneer bacterial colonisation of volcanic ash and highlight the potential for volcanic ash deposits to support bacterial diversity in the aftermath of reef burial, on timescales that could permit cascading effects on larval settlement.
منابع مشابه
Subduction zone volcanic ash can fertilize the surface ocean and stimulate phytoplankton growth: Evidence from biogeochemical experiments and satellite data
[1] Volcanoes confront Earth scientists with new fundamental questions: Can airborne volcanic ash release nutrients on contact with seawater, thereby excite the marine primary productivity (MPP); and, most notably, can volcanoes through oceanic fertilization affect the global climate in a way that is so far poorly understood? Here we present results from biogeochemical experiments showing that ...
متن کاملEffects of Eyjafjallajökull Volcanic Ash on Innate Immune System Responses and Bacterial Growth in Vitro
BACKGROUND On 20 March 2010, the Icelandic volcano Eyjafjallajökull erupted for the first time in 190 years. Despite many epidemiological reports showing effects of volcanic ash on the respiratory system, there are limited data evaluating cellular mechanisms involved in the response to ash. Epidemiological studies have observed an increase in respiratory infections in subjects and populations e...
متن کاملSeasonal Shifts in Bacterial Community Responses to Phytoplankton-Derived Dissolved Organic Matter in the Western Antarctic Peninsula
Bacterial consumption of dissolved organic matter (DOM) drives much of the movement of carbon through the oceanic food web and the global carbon cycle. Understanding complex interactions between bacteria and marine DOM remains an important challenge. We tested the hypothesis that bacterial growth and community succession would respond differently to DOM additions due to seasonal changes in phyt...
متن کاملEffects on the function of three trophic levels in marine plankton communities under stress from the antifouling compound zinc pyrithione.
This study aimed to investigate functional responses of natural marine planktonic communities to stress from the antifouling compound zinc pyrithione (ZPT). Isotope labelling techniques (14C) were applied to study bacterial incorporation of leucine, photosynthetic activity of phytoplankton and grazing of labelled prey by zooplankton communities for 6 days after exposures to nominal concentratio...
متن کاملDiatom Derived Polyunsaturated Aldehydes Do Not Structure the Planktonic Microbial Community in a Mesocosm Study
Several marine and freshwater diatoms produce polyunsaturated aldehydes (PUA) in wound-activated processes. These metabolites are also released by intact diatom cells during algal blooms. Due to their activity in laboratory experiments, PUA are considered as potential mediators of diatom-bacteria interactions. Here, we tested the hypothesis that PUA mediate such processes in a close-to-field me...
متن کامل